If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121x^2+33x+2=0
a = 121; b = 33; c = +2;
Δ = b2-4ac
Δ = 332-4·121·2
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(33)-11}{2*121}=\frac{-44}{242} =-2/11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(33)+11}{2*121}=\frac{-22}{242} =-1/11 $
| 3c-1/5=4c+1/9 | | y=1250(0.865)^3 | | 19b+b+2b-16b-4b=20 | | 0.4x+107=90 | | 1.4z-6=2.9z=9 | | 5-3(2x+3)=26 | | -3x-2x-9x=14 | | 2b+13=51 | | -20v+3v+12v+8v=-6 | | 51=2b+13 | | 324=x | | 18x-10=x+4 | | 0.7x+13.3=x-2.24 | | 7x+1+5x+47=180 | | -4x-7(-3x-6)=-195 | | 13g+5g-14g-3g=19 | | 3/4+2x=5/8 | | 1/2(x-1)+2x=2/3(x+2) | | 3x5-5=2x5 | | (x-1)-7x=18-5(x+4) | | 4(x-2)-2=3x-(x-2) | | 14d+4d-6d-2d-9d=16 | | 11/3(t-6)=-0.4 | | X2+4y=9 | | 2x+10=86 | | 14d+4d−6d−2d−9d=16 | | 4a-8=a-4 | | Y-6=-3x^2 | | 15+9x=60 | | 10,800=12(3x)(2x1) | | 17u-12u-4u+5u=18 | | y=315000(1.02)^20 |